

NATIONAL HIGH MAGNETIC FIELD LABORATORY 2014 ANNUAL RESEARCH REPORT

SAND2015-20732R

Tilt magnetic field studies of quantum Hall effect in a high quality Si/SiGe quantum well

X. Shi, T.M. Lu, W. Pan (Sandia National Labs), S.H. Huang, C.W. Liu, J.Y. Li (National Taiwan University)

Introduction

High quality Si/SiGe quantum well samples have provided an ideal platform to study the electron-electron (e-e) interactions in two-dimensional electron systems (2DES). Currently, the sample mobility has surpassed 10⁶ cm²/Vs and very low carrier densities are realized, which are crucial to reveal strong e-e interactions.

Experimental

In this study, a high quality Si/SiGe quantum well sample was measured under tilt magnetic fields. The electron peak mobility reaches $2 \times 10^6 \text{ cm}^2/\text{Vs}$ and the density is varied from 0.8 to 2.1 x 10^{11} cm^{-2} . The magnetoresistance measurements were performed in a dilution fridge with rotator probe at 20 mK (SCM1). Magnetic field was scanned at fixed tilt angles.

Results and Discussion

Fig. 1 shows a set of typical magneto-transport measurement results of two-dimensional electrons in the high quality Si/SiGe quantum well as a function of tilt angles (or $1/\cos(\theta)$). Under tilt magnetic fields, two Landau levels with opposite spins are brought into energetic coincidence [1], which gives rise to the red peaks in the graph. From the coincidence angles we determine the effective spin susceptibility g^*m^* . At $n = 2.1 \times 10^{11} \text{ cm}^{-2}$, $g^*m^* \sim 4$ (in units of $m_b g_b$), consistent with previous work [2]. Our results further show that the spin susceptibility is enhanced by 20% at $0.8 \times 10^{11} \text{ cm}^{-2}$ from its high density value. In addition, a resistance peak is also observed at nu=3 when the coincidence occurs in our undoped Si/SiGe field-effect transistor sample, different from previous results in modulation doped Si/SiGe quantum wells [2].

Conclusions

The enhancement of the effective spin susceptibility g*m* as the charge carrier density decreases indicates that either g* or m* is strongly modified by the e-e interactions.

Acknowledgements

A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy. The work at Sandia is supported by the DOE office of Basic Energy Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Fig. 1 Contour plot of Rxx as a function of filling factor nv and tilt angle parameter 1/cos(theta), where theta is the angle between B field and the sample norm.

References

- [1] Fang and Stiles, Phys. Rev. 174, 823 (1968).
- [2] Lai et al, Phys. Rev. Letts. 96, 076805 (2006).

